CBSE Guess > Papers > Important Questions > Class XII > 2010 > Maths > Mathematics By Mr. M.P.Keshari
Integrals
7.7. Integrals of Some More Types.
Q.1. Evaluate : ∫√(4 – x2) dx.
Solution :
We have, ∫√(4 – x2) dx = ∫1.√(4 – x2) dx
= x.(1/2)(4 – x2)–1/2 (– 2x).dx [Integrating by parts]
= x.√(4 – x2) – ∫(– x2)/√(4 – x2) dx
= x.√(4 – x2) – ∫{(4 – x2) – 4 }/√(4 – x2) dx
= x.√(4 – x2) – ∫√(4 – x2) dx + 4∫dx/√(4 – x2)
Or, 2∫√(4 – x2) dx = x.√(4 – x2) + 4∫dx/√(22 – x2)
= x.√(4 –x2) + 4 sin –1(x/2)
Therefore, ∫√(4 – x2) dx = (1/2). x.√(4 – x2) + 2 sin –1(x/2) + C. [Ans.]
Q.2. Evaluate : ∫[(x2 + 1)/(x4 + 1)] dx.
Solution :
We have, I = ∫[(x2 + 1)/(x4 + 1)] dx
= ∫[(1 + 1/x2)/(x2 + 1/x2)] dx
Put x – 1/x = t, then (1 + 1/x2)dx = dt
Also x2 + 1/x2 = (x – 1/x)2 + 2 = t2 + 2.
Therefore, I = ∫dt/(t2 + 2) = ∫dt/{t2 + (√2)2}
= (1/√2)tan-1 (t/√2) + c
= (1/√2)tan -1 [(x – 1/x)/√2] + c
= tan –1 [(x2 – 1)/(√2)x] + c. [Ans.]
7.8. Definite Integral as The Limit of a Sum.
Q.1. Evaluate : 0∫2 (x2 + x + 2) dx as limit of sums.
Solution :
Let I = 0∫2 (x2 + x + 2) dx .
Here, we have, f(x) = x2 + x + 2; a = 0, b = 2
Therefore, n h = b – a = 2.
By definition,
a∫b f(x) dx = lim h→0 h[ f(a) + f(a + h) + ------- + f{a + (n – 1)h }]
where nh = b – a .
Therefore, I = lim h→0 h[(02 + 0 + 2) + (h2 + h + 2) + ---- + (n – 1)2h2 + (n – 1)h + 2]
where nh = 2.
= lim h→0 h[{12 + 22 + ------ + (n – 1)2}h2 + {1 + 2 + ------ (n – 1)}h + 2n]
= lim h→0 h[1/6(n – 1)n(2n – 1)h2 + {(n – 1)n/2}h + 2n}
= lim h→0 [1/6(nh – h)(nh)(2nh – h) + 1/2 (2 – h).2 + 2×2]
= 1/6 (2)(2)(4) + 1/2 (2)(2) + 4
= 26/3. [Ans.]
Paper By Mr. M.P.Keshari
Email Id : [email protected]
Ph No. : 09434150289 |