CBSE Guess > Papers > Important Questions > Class XII > 2010 > Maths > Mathematics By Mr. M.P.Keshari
Integrals
Q.2. Evaluate : 0∫2(x2 + x + 1) dx as limit of a sum.
Solution :
We have, f(x) = x2 + x + 1, a = 0, b = 2 => n h = b – a = 2 – 0 = 2.
By the formula,
a∫bf(x) dx = limh→0 h[f(a) + f(a + h) + ----- + f{a + (n – 1)h}]
where nh = b – a
Therefore, 0∫2(x2 + x + 1) dx = limh→0 h[(02 + 0 + 1) + (h2 + h + 1) + {(2h)2 + 2h + 1}
+ ----- + {(n – 1)2h2 + (n – 1)h + 1] where nh = 2.
= limh→0 h[{12 + 22 + ---- + (n – 1)2}h2 + {1 + 2 + ----- + (n – 1)}h + n]
where nh = 2.
= limh→0 h[1/6(n – 1)n(2n – 1)h2 + 1/2n(n – 1)h + n], where nh = 2.
= limh→0 [1/6(nh – h)nh(2nh – h) + 1/2(nh – 1)nh + nh], where, nh = 2.
= 1/6(2 – 0)×2(2×2 – 0) + 1/2(2 – 0)×2 + 2
= 8/3 + 2 + 2
= 20/3. [Ans.]
Q.3. Evaluate : 1∫3(x2 + 5x)dx as the limit of sums.
Solution :
o yourself. [Ans. = 86/3.]
Q.4. Evaluate : 1∫3(x2 + x)dx as limit of sums.
Solution :
Do yourself. [Ans. = 38/3.]
7.9. Evaluation of Definite Integrals.
Q.1 Evaluate : 0∫1 dx/(1 + x2).
Solution :
We have, 0∫1 dx/(1 + x2) = I (say)
Put x = tan θ, then dx = sec2 θdθ and 1 + x2 = 1 + tan2 θ = sec2 θ.
When x = 0 , tan θ = 0 => θ = 0 and when x = 1, θ = π/4.
Therefore, I = 0∫π/4sec2 θdθ/sec2θ
= 0∫π/4dθ
= [θ]0π/4 = π/4. [Ans.]
Alternative
Let I = 0∫1dx/(1 +x2)
= [tan –1 x]01
= tan –1 (1) – tan –1 (0)
= π/4 – 0 = π/4. [Ans.]
Paper By Mr. M.P.Keshari
Email Id : [email protected]
Ph No. : 09434150289 |